Maximum Likelihood Estimator and Kullback{leibler Information in Misspeciied Markov Chain Models

نویسندگان

  • Priscilla E. Greenwood
  • Wolfgang Wefelmeyer
چکیده

Suppose we have speciied a parametric model for the transition distribution of a Markov chain, but that the true transition distribution does not belong to the model. Then the maximum likelihood estimator estimates the parameter which maximizes the Kullback{Leibler information between the true transition distribution and the model. We prove that the maximum likelihood estimator is asymp-totically eecient in a nonparametric sense if the true transition distribution is unknown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimality of estimators for misspecified semi-Markov models

Suppose we observe a geometrically ergodic semi-Markov process and have a parametric model for the transition distribution of the embedded Markov chain, for the conditional distribution of the inter-arrival times, or for both. The first two models for the process are semiparametric, and the parameters can be estimated by conditional maximum likelihood estimators. The third model for the process...

متن کامل

Tracking Interval for Type II Hybrid Censoring Scheme

The purpose of this paper is to obtain the tracking interval for difference of expected Kullback-Leibler risks of two models under Type II hybrid censoring scheme. This interval helps us to evaluate proposed models in comparison with each other. We drive a statistic which tracks the difference of expected Kullback–Leibler risks between maximum likelihood estimators of the distribution in two diff...

متن کامل

Adaptive Estimators for Parameters of the Autoregression Function of a Markov Chain

Suppose we observe an ergodic Markov chain on the real line, with a parametric model for the autoregression function, i.e. the conditional mean of the transition distribution. If one speciies, in addition, a paramet-ric model for the conditional variance, one can deene a simple estimator for the parameter, the maximum quasi-likelihood estimator. It is robust against misspeciication of the condi...

متن کامل

Consistency of the Maximum Likelihood Estimator for General Hidden Markov Models

Abstract. Consider a parametrized family of general hidden Markov models, where both the observed and unobserved components take values in a complete separable metric space. We prove that the maximum likelihood estimator (MLE) of the parameter is strongly consistent under a rather minimal set of assumptions. As special cases of our main result, we obtain consistency in a large class of nonlinea...

متن کامل

Adaptive context trees and text clustering

In the finite-alphabet context we propose four alternatives to fixed-order Markov models to estimate a conditional distribution. They consist in working with a large class of variablelength Markov models represented by context trees, and building an estimator of the conditional distribution with a risk of the same order as the risk of the best estimator for every model simultaneously, in a cond...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007